본문 바로가기

카테고리 없음

Iec Function Generator Manual

, and waveformsA function generator is usually a piece of or used to generate different types of electrical over a wide range of frequencies. Some of the most common waveforms produced by the function generator are the sine wave, square wave, triangular wave and sawtooth shapes. These waveforms can be either repetitive or single-shot (which requires an internal or external trigger source).

Used to generate waveforms may also be described as function generator ICs.In addition to producing sine waves, function generators may typically produce other repetitive waveforms including sawtooth and triangular waveforms, square waves, and pulses. Another feature included on many function generators is the ability to add a DC offset.Although function generators cover both audio and RF frequencies, they are usually not suitable for applications that need low distortion or stable frequency signals. When those traits are required, other would be more appropriate.Some function generators can be phase-locked to an external signal source (which may be a frequency reference) or another function generator.Function generators are used in the development, test and repair of electronic equipment.

For example, they may be used as a signal source to test amplifiers or to introduce an error signal into a control loop. Function generators are primarily used for working with, related are primarily used for working with. Contents.Electronic instruments Working Simple function generators usually generate triangular waveform whose frequency can be controlled smoothly as well as in steps. This triangular wave is used as the basis for all of its other outputs. The triangular wave is generated by repeatedly charging and discharging a from a constant. This produces a ascending and descending voltage ramp. As the output voltage reaches upper or lower limits, the charging or discharging is reversed using a, producing the linear triangle wave.

By varying the and the size of the capacitor, different may be obtained. Can be produced by charging the capacitor slowly, using a current, but using a diode over the current source to discharge quickly - the polarity of the diode changes the polarity of the resulting sawtooth, i.e. Slow rise and fast fall, or fast rise and slow fall.A 50% is easily obtained by noting whether the capacitor is being charged or discharged, which is reflected in the current switching comparator output. Other duty cycles (theoretically from 0% to 100%) can be obtained by using a comparator and the sawtooth or triangle signal. Most function generators also contain a non-linear that can convert the triangle wave into a reasonably accurate by rounding off the corners of the triangle wave in a process similar to in audio systems.A typical function generator can provide frequencies up to 20 MHz. RF generators for higher frequencies are not function generators in the strict sense since they typically produce pure or modulated sine signals only.Function generators, like most, may also contain an, various means of the output waveform, and often the ability to automatically and repetitively 'sweep' the frequency of the output waveform (by means of a ) between two operator-determined limits.

This capability makes it very easy to evaluate the of a given.Some function generators can also generate. More advanced function generators are called (AWG).

They use (DDS) techniques to generate any waveform that can be described by a table of amplitudes.Specifications Typical specifications for a general-purpose function generator are:. Produces sine, square, triangular, sawtooth (ramp), and pulse output. Can produce waves of any shape. It can generate a wide range of frequencies.

For example, the Tektronix FG 502 (ca 1974) covers 0.1 Hz to 11 MHz. Frequency stability of 0.1 percent per hour for analog generators or 500 ppm for a digital generator. Maximum sinewave of about 1% (accuracy of diode shaping network) for analog generators. Arbitrary waveform generators may have distortion less than -55 dB below 50 kHz and less than -40 dB above 50 kHz. Some function generators can be phase locked to an external signal source, which may be a frequency reference or another function generator. Amplitude modulation (AM), frequency modulation (FM), or phase modulation (PM) may be supported. Output amplitude up to 10 V.

Amplitude can be modified, usually by a calibrated with decade steps and continuous adjustment within each decade. Some generators provide a DC offset voltage, e.g. Adjustable between -5V to +5V. An output impedance of 50 Ω.Software A completely different approach to function generation is to use instructions to generate a waveform, with provision for output. For example, a general-purpose can be used to generate the waveform; if frequency range and amplitude are acceptable, the fitted to most computers can be used to output the generated wave.Circuit elements Waveform generator An electronic circuit element used for generating waveforms within other apparatus that can be used in communications and instrumentation circuits, and also in a function generator instrument.

Generator

Examples are the XR2206 and the integrated circuits , which can generate sine, square, triangle, ramp, and pulse waveforms at a.Function generator An electronic circuit element that provides an output proportional to some mathematical function (such as the square root) of its input; such devices are used in systems and in. Examples are the QK329 square-law tube and the Intersil ICL8048 Log/Antilog Amplifier. Mechanical function generators Mechanical function generators are, or, designed to reproduce different types of functions, either periodic (like sine or cosine functions), or single-shot (logarithm, parabolic, tangent functions etc.).Measurement instruments like pressure gauges, altimeters and barometers include linkage-type function generators as linearization means.Before the advent of digital computers, mechanical function generators were used in the construction of, and., 2005-08-21. ^ Bakshi, U. A.; Bakshi, A. V.; Bakshi, K.

Pune, India: Technical Publications. Pp. 3–26, 3–27.

Function Generator And Oscilloscope

Sonde, B. New Age International. Pp. 244–246. ^ FG 502 Function Generator, Instruction Manual, Beaverton, OR: Tektronix, 1973, pp=1-7–1-8. FG 502 distortion is 0.5 percent.

(PDF). Retrieved 16 June 2013.

Miller, Joseph A.; Soltes, Aaron S.; Scott, Ronald E. (February 1955). Retrieved 15 June 2013. (PDF). Retrieved 16 June 2013.

Simionescu, P.A. International Journal of Mechanisms and Robotic Systems. Inderscience Publishers (IEL). 3 (1): 60–79.External links Wikimedia Commons has media related to. Rostky, George (March 13, 2001), EE Times, retrieved March 31, 2012.

History of the function generator.